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A Model with Free Particles Used for Numerical Simulation
of Charpy Impact Test of Plastic Materials
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This paper presents a model for the numerical simulation of Charpy test, using together Smoothed Particle
Hydrodynamics (SPH) Method and Finite Element Method. Numerical simulation of the mechanical tests
require the use of special material models, so the material fracture to be also simulated. The new numerical
method, SPH Method, in fact a version of the Free Particle Method, presents some important advantages
among which no material failure criterion to be used. Our proposed model is a model combining the FEM
and SPH Model: only the specimen is modeled only by particles. The numerical results are compared with
the results using only FEM and finally with the experimental data. Avoiding the material models, in fact the
failure criterion, by SPH method presents a great advantages because any material model (Plastic-kinematic,
Johnson-Cook, Modified Johnson-Cook, Picewise linear plasticity etc.) involves knowledge about some
material constants. This aspect is very important and in the same time, very difficult. The numerical model
together with some theoretical fundamentals of the SPH Method could be more then an invitation for using
the SPH Method, it could be an available model able to inspire the researchers in their work. The paper is
finished after some conclusions.
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For their properties, plastic materials are used more and
more, even in those conditions where safety requirements
must be full filled, in static and dynamic conditions. Plastic
materials  properties were essentially improved in last
period and many plastic materials types are also developed.
Using domains of plastic materials are very different,
starting with the most important domains like aeronautics,
healthy devices, electronics etc., until home and common
devices.

Mechanical tests are the most important experiments
to be passed by the plastic materials and perhaps Charpy
and Izod tests are the most used. Such tests have to take
place in accredited laboratories, in accordance with the
recognized International Standard ISO/IEC 17025.

Just in these circumstances, numerical analysis or
numerical simulation of the mechanical tests represents
a researching way for improving of the plastic materials
properties, which does not exclude the mechanical tests,
but gives them more importance without an increase in
costs.

As numerical analysis is concerned, this paper bring to
us a numerical method, probably newest after the finite
element method that practically is unused in our country:
it is about Smoothed Particle Hydrodynamics (SPH)
method - the most known and used version of the free
particle method.

This method presents some important advantages
comparatively with FEM, especially for its capability for
avoiding the difficulties appearing owing to large
deformation, but that method has also other advantages.

Among these advantages the possibility of describing
the material rupture without using a special material model
is one of the most important one.

In this paper, the theoretical fundamentals of SPH
method are presented. The example chosen for
demonstration is referring to the numerical simulation of
Charpy test applied to a plastic material.

Fundamentals of SPH method
Smoothed Particle Hydrodynamics (SPH) method is a

griddles Lagrangian technique which comes from
astrophysics (1977). The SPH method was extended to
fluid simulation, especially with free-surface (1992), but is
more and more used in applied mechanics. Some
substantial advantages of SPH method comparatively with
Finite Element Method (FEM) occur.

These advantages are referring to the problem involving
large deformations, then the lack of a grid allows some
calculus facilities, including the contact modeling and not
the last in an important order, the SPH method can describe
the material rupture without using special material models.
Therefore, using of SPH method does not require damage
criterion and material constants of the adopted material
model.

The SPH method belongs to the meshless methods, so
the investigated domain is represented by a number of
nodes, representing the particles of this domain, having
their material and mechanical (mass, position, velocity
etc.) characteristics. Each particle represents an
interpolation point on which the material properties are
known. The boundary conditions have to be imposed to
some of particles, according to the problem analyzed, like
in the case of finite element method.

The problem solution is given by the computed results,
on all the particles, using an interpolation function. We can
say that the fundamentals of SPH theory consist in
interpolation theory; all the behavior laws are transformed
into integral equations.

The kernel function, or smoothing function, often called
smoothing kernel function, or simply kernel,  gives a
weighted approximation of the field variable (function) in
a point (particle). Integral representation of a function f(x),
used in the SPH method starts from the following identity:

(1)
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Fig. 1 Support
domain of the kernel

function

Fig. 2  Smoothing length

where f  is a function of a position vector x, which can be
an one-, two- or three-dimensional one; δ(x - x’)  is a Dirac
function, having the properties:

     (2)

In equation (1), Ω is the function domain, which can be
a volume, that contains the x, and where f(x) is defined
and continuous. By replacing the Dirac function with a
smoothing function W(x - x’, h) the integral representation
of f(x) becomes:

    (3)

where W is the smoothing kernel function, or smoothing
function, or kernel function. The parameter h, of the
smoothing function W, is the smoothing length, by which
the influence area of the smoothing function W is defined
(fig. 1).

As long as Dirac delta function is used, the integral
representation, described by equation (1), is an exact
(rigorous) one, but using the smoothing function W instead
of Dirac function, the integral representation can only be
an approximation. This is the reason for the name of kernel
approximation. Using the angle bracket, this aspect is
underlined and the equation (3) can be rewritten as:

                    (4)

The smoothing function W is usually chosen to be an
even one, which has to satisfy some conditions. The first
condition, named normalization condition or unity condition
is:

          (5)

The second condition is the Delta function property and
it occures when the smoothing length approaches zero:

  (6)

The third condition is the compact condition, expressed
by:

                (7)

where k is a constant related to the smoothing function for
point at x, defining the effective non-zero area of the
smoothing function, as the figure 2 shows.

As the particle approximation is concerned, the
continuous integral aproximation (4) can be converted to
a summation of discretized forms, over all particles
belonging to the support domain.

Changing the infinitesimal volume dx’ with the finite
volume of  the particle ∆Vj, the mass of the particles mj
can be written,

 (8)

and finally, relation (3) becomes:

                             (9)

The particle approximation of a parameter, described
by a function, for a particle i, can be expressed by,

                              (10)

where, Wij  is the kernel function.

                        (11)

So, concluding and in a synthetic presentation, the most
important requirements of a kernel function are:

- the smoothing function has to be normalized over its
support;

- the smoothing function has to be compactly supported;
- the smoothing function has to be positive for any point

at  x’ within the support domain;
- the smoothing function value has to be monotonically

decreasing with the increase of the distance away from
the particle;

·- the smoothing function value has to satisfy the Dirac
delta function condition as the smoothing length
approaches to zero;

-  the smoothing function value has to be an even function
(symetric).

The literature presents different smoothing function
(also called smoothing kernel function, smoothing kernel,
or kernel). Theoretically, any function having the properties
presented above, can be employed as SPH smoothing
function.

Graphical representation of the most used kernel
functions until now is presented in the figure 3.

The Ls-Dyna program uses a cubic B-spline kernel
function, in the form given by relation (12), where s = r / h,
n  is the number representing the spatial dimension and α
is a constant which has the value: 2/3, 10/7π or 1/π,
depending on the space dimension.
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Fig. 3. Graphical representation of different kernel functions
Fig. 4. Graphical representation of B-spline kernel function and its

derivates

Table 1
MATERIAL PROPERTIES OF THE SPECIMEN

Fig. 5 Numerical model with free
particles

(12)

The graphical representation of this smoothing function
and its derivatives (first and second) can be seen in the
figure 4.

A smoothing length too small (not enough particles in
the support domain) influence on the calculus efficiency
and also the accuracy, this going down. A smoothing length
too large all the particle properties may be smoothed out
and finally the accuracy will be a low one.

The best way seems to be a variable smoothing length
according to calculus and accuracy efficiency. So, many
ways already exist for a dinamically evolving of h, for geting
a suitable number of the neighboring particle, which to
remain relatively constant.

The simplest approaching is that the smoothing length
to depend on the average density. From this point of view,
the literature proposed the following relation:

                                   (13)

where h0  and ρ0  are the initial smoothing length and density
respectively; d is the number representing the space
dimension (1D, 2D or 3D, or simply 1, 2, or 3).

Numerical Model of Charpy Impact Test
For evaluation of the mechanical properties, in dynamic

condition, of the plastic materials and others as well, the
Charpy and/or Izod test is used. The free particle method in
SPH version is very efficient for simulation of these tests,
using only fundamental information about a material,
namely: Young modulus, density and yielding stress. The
material model can be the simplest one or the most
sophisticated that take into account a fracture criterion,
the influence of strain rate and the consolidation
phenomenon.

For numerical simulation, all requirements regarding the
geometry of the striker (hummer), of the specimen and its
supporting were fulfilled, in other words all requirements
coming from standards ISO 179-1 and ISO 179-2 have been
met. The numerical simulation of Charpy test, presented
here, used a notched specimen. In the figure 5 we can see
the numerical model: a) frontal view and b) a 3-D view.

The striker is modeled with 1660 SOLID finite elements
(FE) having variable dimensions, from 0.05 mm in the
contact zone, to 2 mm in the far zone of the contact. As we
can see, only a part of the striker is considered - that part
which has a contact with the specimen. The material
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Fig. 6  Final state of specimen

Fig. 7  Equivalent von Mises stress field at
the end of analysis period

Fig. 8 Time evolution of the hammer
kinetic energy

model used for striker is rigid material model - a choosing
which makes easier the computer calculus. This is a right
choosing and by the reason that striker material has a much
more strength comparatively with a plastic material.

The material density is calculated from requirement that
the striker volume adopted to lead us to a realistic mass
value of an Charpy hammer. We adopted a density of 3.057
g/mm3, resulting a mass of  5 kg. For a striker kinetic energy
of  about 60 J, the impact velocity was 5 m/s.

The specimen has the dimensions 10 x 10 x 55 mm
with an U notch, which complies with all standards.  So,
the fracture section aria is 50 mm2. The specimen is
modeled by 48363 particles, uniformly distributed in
volume, with an internodal distance of 0.50 mm.

The specimen material is a Mitsubishi Engineering
Plastics, named lupital Acetal F10; the main properties of
this plastics are presented in the table 1.

Those three different colored portions of the specimen
(fig. 5) represent three identical parts of the specimen and
this organization is a calculus trick for a smaller computer
time.

The restrictions imposed to the specimen consist in zero
Z-displacement of the nodes placed in the longitudinal
symmetry plane (xOy).

Specimen is supported on an anvil as the figure 5
presents.The anvil also meet standard requirements and it
is modeled with 816 SOLID finite elements.

Adopted analysis time resulted from condition that the
striker to pass through specimen, this being broken.

Results
The final state of numerical model is presented in the

figure 6 and 7, where the von Mises equivalent stress field
is represented.

We used a unit measure system having the fundamental
units g/mm/s. In this circumstances, the kinetic energy,
represented in the figure 8, has the maximum values 62.5
Nm and the minimum value 62.057 Nm. In the Charpy
test, this energy variation (0.443 Nm or J) represents the
energy absorbed by the specimen during the fracture
process. The calculus of Charpy test result can be obtained
imediately:

             (14)

As it is recommended, this energy has to be less then
10% of maximum hammer kinetic energy (6.25 Nm). But
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Fig. 9  The specimen state at the moment
of rupture

Fig. 10  Time evolution of the specimen
total energy (kinetic & internal)

the result of relation (14) has not enough accuracy because
the moment of rupture finishing is not the moment of our
analysis. By graphical post-processing the rupture moment
can be determined with accuracy. Figure 9 shows this
moment.

From the file of striker kinetic energy, for the time
0.00089976 s, the value of kinetic energy is 62.099 J. Using
this value in relation (14), the Charpy test result, KCU has
the value 8.04 kJ/m2, a value very closed with the
manufacturer value.

With very good results, instead of striker kinetic energy,
we can use the specimen total energy, represented in the
figure 10. All energy types of the specimen come from the
striker kinetic energy.

Conclusions
The appearing of this new numerical method, almost

unknown and unused in our country, open a new way of
numerical analysis in applied mechanics.

Using numerical simulation of the classical material
testing can bring more accuracy in experiment, can make
experimental investigation chipper but more efficient.

SPH modeling allow us to obtain good results just in the
case of poor information about a material (without material
constants of the material models).

The moment of total fracture of the specimen can be
determined and so, we could have better information about
material dynamic behavior.
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